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We used methods of Bayesian statistical inference and the principle of maximum entropy to analytically
continue imaginary-time Green’s functions generated in quantum Monte Carlo simulations to obtain the real-
time Green’s functions. For test problems, we considered chains of harmonic and anharmonic oscillators whose
properties we simulated by a hybrid path-integral quantum Monte Carlo method. From the imaginary-time
displacement-displacement Green’s function, we first obtained its spectral density. For harmonic oscillators, we
demonstrated the peaks of this function were in the correct position and their areas satisfied a sum rule.
Additionally, as a function of wave number, the peak positions followed the correct dispersion relation. For a
double-well oscillator, we demonstrated that the peak location correctly predicted the tunnel splitting. Trans-
forming the spectral densities to real-time Green’s functions, we conclude that we can predict the real-time
dynamics for length of times corresponding to five to ten times the natural period of the model. The length of
time was limited by an overbroadening of the peaks in the spectral density caused by the simulation algorithm.
@S1063-651X~96!03706-3#

PACS number~s!: 02.70.Lq, 05.30.2d, 02.50.Wp

I. INTRODUCTION

One of the goals for doing computer simulations is the
production of information useful in the interpretation and
design of experiments. Notwithstanding important issues re-
garding Hamiltonian selection and parametrization, the inter-
face of simulations with experiment is particularly challeng-
ing for quantum systems. The current Monte Carlo
algorithms, whether they impose quantum particle statistics
constraints or not, are performed either in real-timet or in
imaginary-time~Euclidean time! t52i t . In real time, the
propagator exp(i tH ) for a system, described by a Hamil-
tonianH, oscillates wildly at long times. Analytically, these
rapid oscillations self-cancel, but a Monte Carlo process, as
it is typically used, has difficulty achieving this cancellation.
As a consequence, modifications of the basic algorithms
have been proposed to extend the simulations as long as
possible in the real-time domain@1#. With these new algo-
rithms, simulations typically produce dynamics extending to
two to three times the natural periods of the systems. In
imaginary time, the propagator exp~2tH! is diffusive and
the rapid oscillations are avoided. The correlation functions
G~t!, however, are now a function of imaginary time, and
such functions do not easily convey the actual dynamics of
the system. In principle, real-time correlation~Green’s! func-
tions Ĝ(t) can be obtained from the imaginary-time ones by
the process of analytic continuation. In practice, this process
is difficult because it is ill posed and because the Monte
Carlo data are incomplete and noisy.

Recently, procedures were proposed to perform this ana-
lytic continuation@2#. They draw heavily upon methods of
Bayesian statistical inference and the principle of maximum

entropy to infer from imaginary-time correlation functions
their associated spectral densitiesA~v!. Through linear-
response theory, the spectral densities represent the spectra
associated with numerous real-time measurements of
current-current, spin-spin, etc. correlation functions. What
apparently has not yet been tried is performing the Hilbert
transform of these spectral densities to obtain the frequency-
dependent retarded correlation function and then Fourier
transforming this quantity to obtain the real-time correlation
function. In this paper, we will carry out these additional
steps for select cases as part of a feasibility study for using
imaginary-time Monte Carlo simulations to obtain real-time
~and real-frequency! information.

Once a spectral density is obtained from the simulation
data, obtaining the real-time correlation functions by per-
forming the Hilbert transforms numerically is straightfor-
ward and almost trivial.A priori, we expected that the result-
ant real-time information would be limited by the
approximate and probabilistic nature of the analytic continu-
ation methods. We found, however, that the distance in real
time over which our results are valid was limited primarily
by the ability of the simulation algorithm to produce good
data. As emphasized in@2#, to interface profitably with the
numerical analytic continuation, the simulation algorithm has
to produce high quality data consistent with the assumptions
of procedures. The algorithm we used had problems doing
this, and we will describe the measures taken to reduce this
difficulty. Even so, in most cases we were able to extend in
real time up to a factor of 10 natural periods of the physical
systems. Longer extensions are possible and require longer
Monte Carlo runs. For present purposes, we had no physical
motivation to do so. We will report just a few real-time re-
sults. As a feasibility study, we will emphasize the unex-
pected and subtle difficulties we encountered in obtaining
good spectral densities. These difficulties appeared mainly
algorithmic related. While only simple models are consid-
ered here, we believe they are general enough that similar
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issues will occur in more realistic and interesting simulations
which often use similar algorithms.

In Sec. II, we will discuss the various models studied. We
simulated a particle moving in single harmonic and double-
well anharmonic potentials and a collection of particles mov-
ing in chains of these potentials. For these models we know
the exact solutions. By calculating their properties numeri-
cally, we can benchmark our methods. Certain properties of
a single double-well potential, like the tunnel splitting, are
easily obtained numerically. The phase diagram for a chain
of such oscillators is also known@3#. This type of chain can
exist in a symmetric or displacive state. In Sec. III, we sum-
marize the numerical analytic continuation procedure we
used and discuss our simulation technique. Modifying the
simulation technique to be more naturally ergodic and to
produce data with short statistical autocorrelation times was
the most difficult and restrictive part of our study. We
present our results and conclusions in Secs. IV and V.

II. MODELS

We simulated five Hamiltonians. One was that for a single
harmonic oscillator

H5
p2

2m
1

g

2
x2, ~1!

which has the natural frequencyv05Ag/m. Another was
that for a chain ofN such oscillators,

H5(
i

pi
2

2m
1

g

2
~xi2xi21!

2. ~2!

Fourier transforming the displacementsxi and momentapi ,
we can of course rewrite this second Hamiltonian as

H5(
k

pk
2

2m
1 1

2mvk
2xk

2, ~3!

wherek52p,2(N21)p/N,...,p andv k
252v0

2~12cosk!.
In this form, the Hamiltonian is explicitly expressed as a
collection ofN independent simple oscillators. The natural
frequency of an oscillator isvk . The third Hamiltonian was a
variant of the harmonic chain

H5(
i

pi
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2 ~4!

which after Fourier transforming the displacements becomes

H5(
k
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2

2m
1 1

2mvk
2xk

2, ~5!

wherev k
25112v0

2~12cosk!. In this form, the Hamiltonian
is again explicitly expressed as a collection ofN independent
simple oscillators but with a dispersion relation that has a
nonzero frequency atk50. The two other Hamiltonians were
a single, symmetric, double-well potential

H5
p2

2m
1 1

4 ~x221!2 ~6!

which has well bottoms atx561 and a barrier height of
unity at x50, and a chain of such potentials,

H5e(
i
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2

2m
1
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~xi2xi21!

21 1
4 ~xi

221!2. ~7!

In the chain,e sets the barrier height of every double well.
For the chains we assumed periodic boundary conditions and
disallowed particle exchange.

For these Hamiltonians, our simulations obtained esti-
mates of the imaginary-time displacement-displacement
Green’s function

Gi j ~t!5Gi2 j~t!5^Ttxi~t!xj~0!&. ~8!

Here, the angular brackets denote thermal averaging. It is
more convenient and illuminating to work with the spatial
Fourier transformGk~t! of Gi j and it is known@4# that

Gk~t!5
1

2p E
2`

`

dv
e2tvAk~v!

12e2bv ~9!

whereAk~v! is the spectral density. This function has the
properties that

Ak~v!52Ak~2v!. ~10!

The odd symmetry ofAk~v! allows us to reexpress~9! as

Gk~t!5
1

2p E
0

`
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12e2bv

Ak~v!

v
~11!

and it is straightforward to show thatAk~v! obeys the sum
rule

Gk~0!5
1

2p E
2`

`

dv
Ak~v!

12e2bv 5^xk
2&. ~12!

The spectral densityAk~v! is also related to the frequency
Fourier transformĜR~v! of the real-time, retarded Green’s
function @4#,

Ĝk
R~ t !52 iu~ t !^@x2k~ t !,xk~0!#&, ~13!

via

Ĝk
R~v!5

1

2p E
2`

`

dv8
Ak~v8!

v2v81 ih
~14!

where 0,h!1, from which it follows that

Ĝk
R~ t !52 iu~ t !

1

2p E
2`

`

dv Ak~v!e2 ivte2 iht. ~15!

For an individual harmonic oscillator of frequencyvk , the
eigenstates and energies are exactly known, and all the quan-
tities in the above paragraph are known analytically:

Gk~t!5
1

2mvk

1

sinh~bvk/2!
coshFbvkS 122

t

b D G , ~16!

Ak~v!5p@d~v2vk!2d~v1vk!#/mvk , ~17!
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Ĝk
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Ĝk
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The eigenstates and energies of a single harmonic oscil-
lator have definite, well-known characteristics. Because the
potential is symmetric aboutx50, the eigenfunctions have
alternating parity. The ground state has even parity and an
energy1

2vk. The energies of the excited states are regularly
spaced at intervals ofvk . The double-well potential is also
symmetric aboutx50, and its eigenstates also alternate in
parity with the ground state again having even parity. The
precise details about the energy spectrum, however, are only
available numerically. When these states lie below the bar-
rier, and particularly for deep wells, they group into widely
separated, nearly degenerate pairs. The separation in energies
within and between pairs is called thetunnel spitting. The
spectral density is dominated by terms with matrix elements
involving states 0 and 1. Matrix elements ofx involving
~0,3!, ~3,4!, ~0,5!, ~3,5!, ~5,6!, etc. have smaller contributions
to the spectral density because of smaller overlap between
the eigenstates. Additionally, most can be ‘‘frozen out’’ by
making the temperature at least comparable toE32E0 . This
temperature range is the one in which we generally worked.
The nature of the energy levels and eigenstates is schemati-
cally represented in Fig. 1.

The spatial Fourier transformation of the Hamiltonian of
the double-well chain does not produce a system of indepen-
dent oscillators. This is the essence of its nonlinearity. The
model, however, has an interesting zero-temperature phase
diagram as a function of the parameterse and g @3#.
Roughly,e is a measure of the barrier height relative to the
frequency of intersite oscillation and the frequency of oscil-
lation associated with the well bottom. When the barrier
height is large, the particles collectively are displaced to the
left or the right of their classical equilibrium positions in a
broken symmetry state characterized by a nonzero value of
the mean-squared displacement. As the barrier height is low-

ered, a critical value is reached where because of zero-point
motion and tunneling, the particles collectively make a tran-
sition to a state where the mean-squared displacement of
each is zero. Accordingly, a simulation of the chain, done in
one of these two thermodynamic phases, is expected to ex-
hibit different quantum characteristics in the spectral density.

III. METHODS

A. Hybrid path-integral Monte Carlo method

Our Monte Carlo simulations will be based on the Feyn-
man path-integral formulation of quantum mechanics. In
imaginary time, this formulation represents the partition
functionZ as

Z5E Dx e2S@x~ t !#, ~21!

where

S@x~t!#5E
0

b

dt H@x~t!# ~22!

is the action corresponding to the pathx~t! and H[x(t)]
represents the path dependence of the Hamiltonian. The
Monte Carlo method is used to perform the integration over
the paths in~21!. It is applied after the integral in~22! is
approximated by a sum overL steps in imaginary time, each
of length Dt, and the momenta are approximated by a
forward-difference approximation between successive dis-
placements in imaginary time:

pi~t!5m
]xi~t!

]t
'm

xi~t1Dt!2xi~t!

Dt
. ~23!

For a one-dimensional system ofN particles, the action be-
comes

S5Dt (
i , j51

N,L
m

2 Fxi , j2xi , j11

Dt G21V~xi , j ,xi11,j !. ~24!

This form is similar in appearance to a classical two-body
potential energy defined on anN3L lattice where at a given
t the particles interact through the potential energy function
of the original problem~scaled byDt!, and at a given posi-
tion they interact by a harmonic potential with a spring con-
stant equal tom/Dt. For a single particle, the summation
over the spatial coordinatei is dropped and the discretized
action has the interpretation of a chain where the particles at
imaginary time move in a potentialDtV(xj ) while interact-
ing with particles at neighboring times by a harmonic poten-
tial with spring constant 1/Dt. For the models we are con-
sidering, the discretized actions are as follows.

~1! For the single harmonic oscillator,

S5Dt(
j51

L
m

2 Fxj112xj
Dt G21 g

2
xj
2. ~25!

~2! For the harmonic chain,

FIG. 1. Schematic representation of the energy levels in a har-
monic and double-well potential.
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S5Dt (
i , j51

N,L
m

2 Fxi , j112xi , j
Dt G21 g

2
~xi11,j2xi , j !

2. ~26!

~3! For the harmonic chain plus on-site oscillator,

S5Dt (
i , j51

N,L
m

2 Fxi , j112xi , j
Dt G21 g

2
~xi11,j2xi , j !

21 1
2xi , j

2 .

~27!

~4! For the single double-well potential,

S5Dt(
j

L
m

2 Fxj112xj
Dt G21 1

4 ~xj
221!2. ~28!

~5! For the double-well chain,

S5eDt (
i , j51

L,N
m

2 Fxi11,j2xi , j
Dt G21 g

2
~xi , j2xi , j11!

2

1 1
4 ~xi , j

2 21!2. ~29!

The simplest way to apply the Monte Carlo method is to
move repeatedly from point to point on the space-time lat-
tice, at each point propose a change in the coordinate,
xi , j→xi , j8 , and accept the change via the Metropolis algo-
rithm with probability min@1,exp~2DS!#, whereDS is the
change in the value of the action proposed by the proposed
change@5#. This method is often calledpath-integral Monte
Carlo ~PIMC!.

An alternative to the Monte Carlo evaluation of the path
integral is a molecular dynamics evaluation@6#. Here, a fic-
titious momentumpi , j is associated with each point to define
a pseudo-Hamiltonian

Hp5 (
i , j51

N,L p i , j
2

2mp
1S@xi , j # ~30!

and standard molecular dynamics techniques are used to
sample phase space. The approach takes advantage of the
classical nature of the fields in the path-integral formulation
and produces the correct statistical mechanics because in
classical statistical mechanics the momentum degrees of
freedom can be integrated out of the partition function. The
method is often calledpath-integral molecular dynamics.

At the core of the method we used is the hybrid Monte
Carlo approach suggested by Duaneet al. @7#, which com-
bines the molecular dynamics approach with the Monte
Carlo procedure to obtain the best features of both methods.
The general expectation is faster equilibration of the simula-
tion and shorter autocorrelation times between measured
quantities. With this method, the following steps are cycled.
For a given set ofxi , j the corresponding pseudomomenta are
assigned values randomly from a Maxwell-Boltzmann distri-
bution for the velocities. The energy is computed. Next, both
the momenta and displacements are evolved by molecular
dynamics for some pseudotimetp . The energy is recom-
puted. Then the evolved displacements are accepted with
probability min@1,exp~2DE!#, whereDE is the difference in
energy between the initial and final configurations.

Normally, molecular dynamics is energy conserving so
the evolved displacements would always be accepted. A

guiding idea behind the hybrid method is to use a method for
the molecular dynamics with emphasis on fast integration, as
opposed to accurate integration, and to adjust the size of
these stepsDt and tp so the Monte Carlo decision accepts
90–95 % of the configurations. The molecular dynamics
method globally updates all the displacements and is a com-
putationally efficient procedure. The Monte Carlo procedure
maintains detailed balance to ensure proper equilibrium av-
erages and filters out the results of ‘‘bad’’ integrations.

We found, however, that this simple form of the hybrid
method was inadequate for present purposes. The output of
our simulation is to be used as input to maximum entropy
procedures to execute the analytic continuation. As we will
discuss below, the analytic continuation problem is an ill-
posed problem and hence is very sensitive to the size of the
errors associated with the input data. For a fixed amount of
computer time, reducing the size of the error efficiently by a
Monte Carlo method requires shortening the autocorrelation
times between measurements. In our computed Green’s func-
tion, in spite of small estimates for the error bars, we would
often see small~within the error bars! unphysical sawtooth-
like structures in regions aboutt5b/2. Following a simple
procedure suggested by Neal@8#, we could generally remove
this structure and also be more ergodic. His suggestion was
after each Monte Carlo decision to reverse the direction of
the molecular time integration, i.e.,Dt→2Dt, with prob-
ability 1/2. A smaller improvement is achieved by not using
a fixed length for the time integration in the molecular dy-
namics simulation but rather choosing the length randomly
from the interval (tp2d,tp1d) wheretp andd are chosen so
the Monte Carlo acceptance rate is in the 90–95 % range.
We will refer to the combined method as thehybrid path-
integral Monte Carlo ~HPIMC! method. Adjusting the
Monte Carlo acceptance rate is not the entire story. First, it
seems best to insuretp is several times larger than the natural
period associated with the slowest significant modes in the
systems and then choosed to fix the acceptance ratio.

We remark that Fahy and Hamann@9# observed for the
standard hybrid method the existence of a critical timetc
~dependent on model parameters! demarking nonergodic and
chaotic behavior in the results of the time integration. For a
harmonic system,tc is infinite which suggests the inapplica-
bility of the method to a harmonic system. We observed the
behavior they found but whethertp was larger or smaller
than tc had only small consequences on our measured re-
sults. As we illustrate below, we achieved very accurate re-
sults for the harmonic models.

We also remark that the results of the simulations depend
on the size ofDt. By performing simulations for several
different values ofDt, we could in principle extrapolate the
results to theDt50 limit. We did not do this but instead
observed that simulations performed with different values of
Dt gave very similar results.

B. Maximum entropy method

The maximum entropy method@2# is used to regularize
the solution of~11!. Dropping the subscriptk for conve-
nience, we rewrite this equations as

G~t!5E dv K~t,v!@A~v!/v#, ~31!
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where the kernel

K~t!5
1

2p

v@e2tb1e2~b2t!#

12e2bv . ~32!

Because both the kernel andA~v!/v are regular atv50, we
solve forA~v!/v and then trivially findA~v!. For discrete
values oft andv we approximate~31! as

Gi5(
i , j

Ki , jAj ~33!

whereGi5G(t i), Ki , j5K(t i ,v j ), andAj5A(v j )Dv j /v j .
The Monte Carlo method will return estimatesḠi of Gi

and estimates of the sample variances j
2 on theGi . With this

information, a natural solution path toAj would be to find
the values ofAj that minimize

x25(
i

~Ḡi2Gi !
2/s i

2 ~34!

5(
i

S Ḡi2( jKi , jAj

s i
D 2. ~35!

This approach, however, almost always fails. One reason is
that it ignores the strong correlations that normally exist be-
tween the measured values ofGi , i.e., values of the Green’s
function at different imaginary times. At the very least, we
must modify~35! to be

x25(
i , j

~Ḡi2Gi !@C
21# i , j~Ḡj2Gj !, ~36!

whereCi , j is the measured covariance among the values of
Ḡi . The i th diagonal element ofC is simplys i

2. This modi-
fication of the definition ofx2, while necessary, is insuffi-
cient. The difficulty is that the inverse problem, that is, solv-
ing ~31! for A~v!, is ill posed. This condition is caused by
the exponential character of the kernel at large values ofv.
At large v, large variations inA~v! make little change in
G~t!. The simulation, on the other hand, gives noisy and
incomplete information aboutG~t!, and hence for a given set
of Ḡi , an infinite number ofAj will satisfy the least-squares
estimate~36!.

The next level of solution seeks to regularize the minimi-
zation ofx2 by constraining it, i.e., minimizing

x22(
i

a i f i~A!, ~37!

where theai are Lagrange multipliers and thef i(A) are func-
tions ofAj representing possible constraints on the solution.
Typical constraints include smoothness, non-negativity, sum
rules, moments, etc. The difficulty with this approach is
choosing the Lagrange multipliers.Ad hocchoices are com-
monplace. Often small changes in the values of these param-
eters produce massive changes in the results.

The maximum entropy approach follows from the obser-
vation that the spectral density is interpretable as a probabil-

ity density function. The principle of maximum entropy
states the probabilities should be assigned in such a way as to
maximize

S5(
j
Aj2mj2Aj ln~Aj /mj !. ~38!

Here, themj , called thedefault model, set the location of the
maximum ofS and the value ofS at this point to be zero.
The default model is the solution forAj in the absence of
other constraints onAj . The method of maximum entropy
maximizes

Q~A!5aS2 1
2x2. ~39!

To fix a, anad hocprocedure calledhistoricmaximum en-
tropy is often used@10,11#. A more modern alternative is the
Bayesian-basedclassicmaximum entropy which uniquely
determinesa provided certain conditions are meet@10,11#.
Under these conditions the solution forAj is the most prob-
able one. Unfortunately, these conditions seem often violated
in the analytic condition problem. Accordingly, to estimate
theAj , we adopted a procedure suggested by Bryan.

In Bryan’s method@12#, for a given value ofa, we find
theA~a! that maximizesQ(A). For the solution to~33!, we
take

Ā5E da A~a!Prob@auḠ# ~40!

where Prob@auḠ# is the probability ofa given the dataḠ.
Bayesian analysis shows that

Prob@auḠ#5Prob@a#E DA
eQ

ZLZS~a!
, ~41!

whereZL is the normalization factor fore
2x2/2, ZS(a) is the

normalization factor foreaS, and Prob@a# is Jeffreys’ prior.
Details on the computation of this joint probability are dis-
cussed elsewhere@2#. With this function, the integral~40! is
performed numerically.

The most difficult part of the problem is not evaluating
the maximum entropy equations but satisfying the statistical
assumptions on which they are based. The principal assump-
tion is

Prob@ḠuA#5
e2x2/2

ZL
. ~42!

The meaning of this assumption is that the measured values
of Gi are statistically independent and distributed according
to a multivariable Gaussian distribution function defined by
the covariance matrixC. Proper estimation ofC is para-
mount. Under normal circumstances the data produced by
the simulations do not satisfy these assumptions. The proce-
dures we use to have the data approximate these assumptions
are discussed elsewhere@2#. When we have proper data, our
solution ~40! usually shows good insensitivity to the choice
of the default model. Additionally, the historic and classic
maximum entropy solutions usually agree well with it.

6508 53J. BONČA AND J. E. GUBERNATIS



IV. RESULTS

To determine spectral properties of the models listed in
Sec. II, we performed HPIMC simulations with up to 800
bins of data~Nbin!, each with up to 4000 measurements
~Nsweep!. Simulations with large bin sizes were necessary to
avoid nonergodic behavior of the HPIMC method when used
for chains with double-well potentials close to the zero-
temperature phase transition point. Furthermore, we set the
value for the imaginary time step toDt50.25. This choice,
on the one hand, was small enough to avoid errors associated
with the discretization of the otherwise continuous imaginary
time scalet, and, on the other hand, was large enough to
avoid unphysical correlations between successive imaginary-
time measurements of the Green’s functionG~t!. Since our
calculations were performed at the inverse temperaturesb
between 1 and 10, the corresponding number of imaginary
time stepsL5bDt was between 40 and 60.

For a successful application of the HPIMC method it is
crucial to choose the proper value of the pseudotimetp and
the size of its stepDt in the molecular dynamic part of the
simulation. Following Fahy and Hamman, we determined the
value of the critical valuetc for each case under consider-
ation and then tooktp.tc to avoid running the simulation in
a nonergodic regime. Typical values fortp were between 5
and 15 for the double-well cases listed below. We stress that
there was not much difference in the quality of the HPIMC
data if we chosetp.tc or chosetp5tc/2. In addition, we
obtained good data for the harmonic wells by choosing
tp;1/v0 even though for this particular casetc5`. If we
definev0 as the smallest nonzero frequency of the system,
optimal values of the step sizeDt are between 0.05/v0 and
0.1/v0. Larger values ofDt lead to larger errors in the
pseudotime propagation, which then lead to small acceptance
ratios. Smaller values ofDt lead to longer computation
times. Unless specified otherwise, we always chose
m5mp5g51. We emphasize that the HPIMC method is
insensitive to the choice of the massmp associated with the
fictitious momentumpi , j .

In Fig. 2, we show the displacement-displacement
Green’s functionG~t!, for a single harmonic oscillator, ob-
tained by evaluating~16! for various values ofv0b, as a
function of the imaginary-time variablet. These curves look
similar to the Green’s functions that we obtained numerically

for this and the other models: For some parameters and tem-
peratures, theG~t! varies little as a function oft; for others,
it varies rapidly at the ends of the interval@0,b! and is flat in
the middle with values nearly equal to zero; and for still
other parameters, it has a featureless, parabolic looking
shape.

The common features of these curves have several signifi-
cant implications for the analytic continuation problem. First,
we remark that from the quantum Monte Carlo simulations
we obtain estimates ofG~t! only at a relatively small number
of discrete valuesti . The smoothness of the curves implies
that theG(t i) at neighboring values ofti are correlated. The
computation of the covariance matrix in~36! is thus an im-
portant part of the analysis of the data. While the correlations
among the differentt values ofG~t! make the interpretation
of the assignment of an ‘‘error bar’’ to a givent value deli-
cate, such an assignment illustrates several difficulties inher-
ent in the data that help to make the analytic continuation of
the data often very difficult. In the case whereG~t! is nearly
flat, the errors bars mean that a number of values ofG~t! are
‘‘within the error bars’’ of each other. This situation, along
with the correlations implied by sizable off-diagonal ele-
ments of the covariance matrix, means that only a subset,
and often a small subset, of the measured values ofG~t!
represent independent data useful for the analytic continua-
tion procedure. The analytic continuation near the classical
limit can be very difficult.

The situation with the rapid end-point variation and the
flat nearly zero values is another difficult case. Again the flat
region generates a loss of useful values ofG~t! and the
smallness ofG~t! in this region can engender situations
where the error bars would imply that during the simulation
estimates ofG~t!, which must be non-negative, were derived
from ensemble values that included negative ones. The
Monte Carlo algorithms in fact do not produce negative val-
ues but do produce highly skewed fluctuations about the
mean. The Gaussian assumption for the likelihood function
in ~42! thus can only be approached in the limits of a large
number of independent measurements when the central limit
controls the data distribution. The ratio of the mean value to
the estimated variance~signal to noise ratio! also indicates
that the most effective data come from those in the rapidly
decreasing region. At low temperatures, the analytic continu-
ation problem can become very difficult.

The details of the simulation algorithm can also impact
the quality of the results and data. In Fig. 3, we showG(t)/
G(0) as a function oft obtained by two closely related
simulation techniques for a single harmonic oscillator. We
remark that the scale of the abscissa is 1/100 of that of Fig. 2
and the ordinate showst only in a narrow region at the
symmetry pointb/2. The dashed curve is the analytic result
obtained from~16!. The data represented by square markers
were obtained by the HPIMC method without the time-
reversed step; the data represented by the circles were ob-
tained with the HPIMC method with the time-reversed step.
In each case, the same number of Monte Carlo steps was
made. One sees that the fluctuations with the HPIMC method
without the time-reversed step are larger and that the error
bars associated with the results suggest a dip into non-
negative values ofG~t!. More significantly, the results devi-
ate from the exact curve by more than one standard deviation

FIG. 2. Green’s functionG~t! for a particle in a harmonic well,
obtained from the analytical form~21! potential, as a function of
imaginary timet and at different values ofbv0.
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in the immediate vicinity oft5b/2.
The analytic continuation result forA~v! from the data

partially shown in Fig. 3 is shown in Fig. 4. From~17!, the
spectral density should be 0.5d~v21!. The solid curve is
obtained from the HPIMC algorithm and shows a broadened
d function at the right location with nearly the correct
weight. The fraction of a percent difference from the correct
weight is most likely a consequence of the small error caused
by discretizing the imaginary-time derivatives. On the other
hand, the dashed curve, which is obtained from the data ob-
tained from the HIPMC algorithm without the time-reversed
step, is broader, located incorrectly, and has a larger discrep-
ancy in its weight. The increased breadth is a consequence of
the larger variance in the measured data. The incorrect loca-
tion and poorer weight are a consequence of the small devia-
tion from the exact value neart5b/2, which in turn is a
consequence of the Monte Carlo algorithm performing
badly.

In Fig. 5, with the data obtained from the HPIMC algo-
rithm, we show the full analytic continuation fromG~t! to
GR(t). In Fig. 5~a!, the data~open circles! are compared with

the exact results forG~t! ~solid line! obtained from~16!. In
Fig. 5~b!, the dashed curve is theA~v! obtained by the ana-
lytic continuation procedure, while the solid line is a Lorent-
zian at the same location. The real part ofG~v! is shown in
Fig. 5~c!, where the dashed line is the quantum Monte Carlo
result and the solid line is an analytic result obtained from
the Lorentzian from Fig. 5~b!. The widthh of the Lorentzian
shown in Fig. 5~b! was adjusted so thev50 values of the
two curves agreed. The single adjustment produced remark-
ably good agreement at high frequencies. The principal dif-
ferences between the two curves are atv561 where diver-
gences should exist as indicated by~18!. Finally, GR(t) is
shown in Fig. 5~d!. The solid line was obtained analytically
and used the Lorentzian of Fig. 5~b!, while the dashed line is
the quantum Monte Carlo result. The agreement between the
results is satisfying and comparable in quality to that pos-
sible by real-time quantum Monte Carlo methods. The width
of the Lorentzian was 7/v0, i.e., about seven times the natu-
ral period of the harmonic oscillator. This width is still con-
trolled by the size of the variance in the measured values of
G~t!.

For the case of the harmonic chain, we computed the
Green’s functionGk~t! for each independent wave number
and from it found the corresponding spectral densityAk~v!.
As with the single oscillator, this function should be ad
function located atvk and should have a weight equal to
Gk(0)5^x k

2&. As in the single-oscillator case, instead of
finding ad function, we found a Lorentzian-like peak at the
correct location with the correct weight. The peaks for dif-
ferent values ofk, however, had different widths. In general,
the peak widths increased with increasingk, correlating with
the increased variance associated with theGk~t!. The spec-
tral densities for the three lowest values ofk are shown in
Fig. 6. The peak positions as a function ofv give the phonon
dispersion relation. Our determination of this relation is com-
pared to the exact result in Fig. 7. The agreement is excel-
lent. There is a difficulty that must be mentioned. Atk50
and vk50, Gk~t! is flat and the weight of the peak ap-
proaches infinity. Fork50, not surprisingly, we were unable
to do the analytic continuation. This situation is why we
considered the model defined by~4!. Here,vk at k50 is not

FIG. 3. Comparison of analytical results for the Green’s func-
tions for a particle in a harmonic well~dashed curve! with numeri-
cal results ~open circles and squares! obtained using HPIMC
method~a! with and ~b! without the time-reversal step in the mo-
lecular dynamic part of the algorithm.

FIG. 4. Comparison of the spectral functions obtained from the
data shown in Fig. 3. As in Fig. 3, in we present spectral functions
extracted from HPIMC data~a! with and ~b! without the time-
reversal step. We also presentG~0!, the computed area under the
curves. Analytically,G(t50)5^x2&50.500.

FIG. 5. The analytic continuation ofG(t) to GR(t), compared
with exact results~solid line!. ~a! The data,~b! the spectral density,
~c! the real part of the Green’s function, and~d! the real-time,
retarded Green’s function.G(t50)5^x2&50.500.
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zero and the determination ofAk~v!, and subsequentlyvk , is
possible for all values ofk. The dispersion relation found
from the analytic continuation agrees very well with the ex-
act result.

For a single, double-well potential, the spectral density
can give direct information about tunneling processes. This
situation is illustrated in Fig. 8 where the spectral densities
for the Hamiltonian, described by~6!, are shown for several
different values of the parameterm. It is straightforward to
discretize Schro¨dinger’s time-independent differential equa-
tion for this potential and find the eigenvalues of the result-
ing eigenvalue equation. We adjusted the model parameters
so only a very few~usually one! of the lowest eigenstates lay
below the barrier height, similar to the situation depicted in
Fig. 1. ~For deeper wells, our simulation methods would get
stuck in one well or the other for large numbers of Monte
Carlo steps, and hence the algorithm effectively lost ergod-
icity.! In the cases reported, the temperatures of the simula-
tions were also less than the separation between the two low-
est lying pairs of eigenstates. Thus our spectral densities only
exhibited the transition between these two states, and the
position of the peak gives a direct measure of the lowest
frequency tunnel splitting. This position agreed very well
with the exact value calculated from Schro¨dinger’s equation.
Additionally, the weight of the peak also agreed well with
the sum rule~12!.

For a chain of double-well potentials~7!, still a different
situation presents itself. At zero temperature, depending on
the values ofe and g, the system exists either in a broken
symmetry phase, in which the mean-squared displacement is
nonzero, or in a symmetric phase, in which the mean-squared
displacement is zero. The model has a quantum phase tran-
sition. We found that simulation, if performed in the broken
symmetry phase, stuck in one well or the other for large
numbers of Monte Carlo steps, making it difficult to collect
the amount of statistically independent information to do the
analytic continuation. In Fig. 9, we report theAk~v! for two
simulations done in the symmetric phase. The one in Fig.
9~b! is close to the zero-temperature phase boundary. As one
moves closer to theT50 phase boundary by increasinge, the
k50 peak moves towardsv50. This movement is a conse-

FIG. 6. Spectral functions for the harmonic chain at different
values ofk. Arrows above spectral functions denote exact positions
of peaks. We also compare the numerically calculated sum rulesf
with analytical values.~a! Model defined by Eq.~3!; ~b! model
defined by Eq.~4!.

FIG. 7. Dispersion relationvk for harmonic chain withm51
andg51. Markers correspond to discrete values ofvk for a ten-site
system. Squares, the model defined by Eq.~3!; circles, Eq.~4!.

FIG. 8. Spectral functions for a single double-well potential at
different values ofm and different temperatures 1/b. Arrows above
spectral functions denote exact positionsv0 of peaks as obtained by
numerical solution of the double-well potential. We also compare
sum rules, calculated by integrating the spectral functionsA~v!
overv, with G~t50!5^x2&, obtained directly from the QMC calcu-
lation. n is the ratio 1/ht0 whereh was obtained by fittingA~v! to
the analytical formG~v!; see Eq.~23!.
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quence of the decreasing probability for tunneling between
the two minima of the double-well potential as the barrier
height is increased.

V. CONCLUDING REMARKS

We used methods of Bayesian statistical inference and the
principle of maximum entropy to analytically continue
imaginary-time Green’s function generated in quantum
Monte Carlo simulations to obtain the real-time
displacement-displacement Green’s functions. For test prob-
lems, we considered chains of harmonic and anharmonic os-
cillators whose properties we simulated by a hybrid path-
integral quantum Monte Carlo~HPIMC! method. From the
imaginary-time, displacement-displacement Green’s func-
tion, we first obtained its spectral density. For harmonic os-
cillators, we demonstrated that the peaks of this function
were in the correct position and their area satisfied a sum
rule. Additionally, as a function of wave number, the peak
positions followed the correct dispersion relation. For a
double-well oscillator, we demonstrated that the peak loca-
tion correctly predicted the tunnel splitting. Transforming the
spectral densities to real-time Green’s functions, we con-

clude that we can predict the real-time dynamics for length
of times corresponding to five to ten times the natural period
of the model. The length of time was limited by the simula-
tion algorithm and not directly by the analytic continuation
procedure.

The simulation algorithm influences the results in at least
two ways. One way is the ease with which statistically inde-
pendent, Gaussian-distributed data are obtained. In our expe-
rience, of the various quantum Monte Carlo methods we
have used, path-integral Monte Carlo~PIMC! methods tend
to produce data with long-ranged correlations, thus making
statistical independence sometimes difficult to achieve.
Achieving statistical independence is important for proper
error estimation because of the sensitivity of ill-posed prob-
lems to errors in the data. Without statistical independence
these errors are usually underestimated. That the data are
Gaussian distributed is necessary to satisfy the assumptions
of the analytic continuation procedure. Currently, large
amounts of data are used to force the simulation data to have
proper statistical properties. The method of binned averages
@2#, with many measurements in a bin, is used to achieve
statistical independence. The central limit theorem is used to
obtain a Gaussian distribution of the binned averages. Be-
cause of the low computational intensity necessary for the
test cases considered, producing the necessary large amounts
of data was not problematic.

A second way the algorithm can influence the results is
through broken ergodicity and unphysical results. Here, we
are referring to the ragged structure we saw inG~t! with the
hybrid method and to the small systematic difference be-
tween the exact and computed results. We have not previ-
ously seen similar problems. Small modifications in the
simulation algorithm removed the problems but it was at first
difficult to determine the source of the difficulty. Because the
purpose of the research was not algorithmic development, we
did not do any comparisons of HPIMC and other possible
methods to determine relative efficiency and other merits.
Again, the computation times for these simulations are small
~a few hours on a modest workstation! and so we were un-
motivated to make such comparisons. Other recently sug-
gested approaches, e.g.,@13,14#, should be considered as part
of further studies.

In general, we believe we have demonstrated that analyti-
cally continuing imaginary-time correlation functions, ob-
tained from a quantum Monte Carlo simulation, to obtain
real-time correlation functions is a feasible alternative to ob-
taining such real-time functions directly from a quantum
Monte Carlo simulation done in real time. One advantage in
choosing this approach appears to be the longer length of
time over which the real-time information is faithful to the
correct result. Of course, this conclusion is based on one
study of simple models; however, this study does strongly
indicate the direction for further and more extensive work.
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FIG. 9. Spectral functionsA~v! for a chain of 20 sites at two
different values ofe: ~a! e50.5 and~b! e50.75. We present the
spectral functions for different wave vectorsk in units of 2p/20.
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