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Real-time dynamics from imaginary-time quantum Monte Carlo simulations:
Tests on oscillator chains
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(Received 10 November 1995

We used methods of Bayesian statistical inference and the principle of maximum entropy to analytically
continue imaginary-time Green'’s functions generated in quantum Monte Carlo simulations to obtain the real-
time Green'’s functions. For test problems, we considered chains of harmonic and anharmonic oscillators whose
properties we simulated by a hybrid path-integral quantum Monte Carlo method. From the imaginary-time
displacement-displacement Green'’s function, we first obtained its spectral density. For harmonic oscillators, we
demonstrated the peaks of this function were in the correct position and their areas satisfied a sum rule.
Additionally, as a function of wave number, the peak positions followed the correct dispersion relation. For a
double-well oscillator, we demonstrated that the peak location correctly predicted the tunnel splitting. Trans-
forming the spectral densities to real-time Green'’s functions, we conclude that we can predict the real-time
dynamics for length of times corresponding to five to ten times the natural period of the model. The length of
time was limited by an overbroadening of the peaks in the spectral density caused by the simulation algorithm.
[S1063-651%96)03706-3
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I. INTRODUCTION entropy to infer from imaginary-time correlation functions
their associated spectral densitiédw). Through linear-

One of the goals for doing computer simulations is theresponse theory, the spectral densities represent the spectra
production of information useful in the interpretation andassociated with numerous real-time measurements of
design of experiments. Notwithstanding important issues recurrent-current, spin-spin, etc. correlation functions. What
garding Hamiltonian selection and parametrization, the interapparently has not yet been tried is performing the Hilbert

face of simulations with experiment is particularly challeng-transform of these spectral densities to obtain the frequency-
ing for quantum systems. The current Monte Carlodependent retarded correlation function and then Fourier

algorithms, whether they impose quantum particle statistic§ansforming this quantity to obtain the real-time correlation
constraints or not, are performed either in real-timer in function. In this paper, we will carry out these additional

maginary-me Eucidean ime 7~ 1. n real ime, the S8 01 Selctcases as part o  feasily sudy o g
propagator exp{H) for a system, described by a Hamil- ginary

; ; X . . (and real-frequengyinformation.
ton!anH, _osqlllates wildly at long times. Analytically, these Once a spectral density is obtained from the simulation
rapid oscillations self-cancel, but a Monte Carlo process, ag

. ) e . . . ata, obtaining the real-time correlation functions by per-
itis typically used, has difficulty achieving this cancellation. ¢, ing the Hilbert transforms numerically is straightfor-
As a consequence, modifications of the basic algorithmgarq and almost trivialA priori, we expected that the result-
have_ bee_\n proposeq to extend the _S|mulat|ons as long agt real-time information would be limited by the
possible in the real-time domald]. With these new algo- approximate and probabilistic nature of the analytic continu-
rithms, simulations typically produce dynamics extending toation methods. We found, however, that the distance in real
two to three times the natural periods of the systems. Ifime over which our results are valid was limited primarily
imaginary time, the propagator exprH) is diffusive and by the ability of the simulation algorithm to produce good
the rapid oscillations are avoided. The correlation functionslata. As emphasized 2], to interface profitably with the
G(7), however, are now a function of imaginary time, and numerical analytic continuation, the simulation algorithm has
such functions do not easily convey the actual dynamics ofo produce high quality data consistent with the assumptions
the system. In principle, real-time correlatit@reen’s func-  of procedures. The algorithm we used had problems doing
tions G(t) can be obtained from the imaginary-time ones bythis, and we will describe the measures taken to reduce this
the process of analytic continuation. In practice, this procesdifficulty. Even so, in most cases we were able to extend in
is difficult because it is ill posed and because the Monteaeal time up to a factor of 10 natural periods of the physical
Carlo data are incomplete and noisy. systems. Longer extensions are possible and require longer
Recently, procedures were proposed to perform this anavionte Carlo runs. For present purposes, we had no physical
lytic continuation[2]. They draw heavily upon methods of motivation to do so. We will report just a few real-time re-
Bayesian statistical inference and the principle of maximunsults. As a feasibility study, we will emphasize the unex-
pected and subtle difficulties we encountered in obtaining
good spectral densities. These difficulties appeared mainly
“Present address: J. Stefan Institute, University of Ljubljanaalgorithmic related. While only simple models are consid-
61111 Ljubljana, Slovenia. ered here, we believe they are general enough that similar
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53 REAL-TIME DYNAMICS FROM IMAGINARY-TIME QUANTU M. .. 6505

issues will occur in more realistic and interesting simulations pi2 ¥
which often use similar algorithms. H=e>, omt 32 (Xi—Xi-1)2+ 3¢ —1)2. (7)
In Sec. Il, we will discuss the various models studied. We ! m
simulated a particle moving in single harmonic and double- . . .
well anharmcF))nic potentialsgand a c%llection of particles mov-In the cham,e sets the barrier helght of every d°“b_'? well.
ing in chains of these potentials. For these models we kno or the chains we assumed periodic boundary conditions and
the exact solutions. By calculating their properties numeri-d'sallowed partlcle.exchange. . : . .
cally, we can benchmark our methods. Certain properties of For these Ha.mllto.mans,_ our s_|mulat|ons obFalned estl-
a single double-well potential, like the tunnel splitting, aremates’ of the imaginary-time - displacement-displacement
easily obtained numerically. The phase diagram for a chaiﬁ;‘reen s function
of such oscillators is also knowi3]. This type of chain can
exist in a symmetric or displacive state. In Sec. Ill, we sum-

marize the numerical analytic continuation procedure w . .
used and discuss our simulation technique. Modifying thj—lere, the angular brackets denote thermal averaging. It is
more convenient and illuminating to work with the spatial

simulation technique to be more naturally ergodic and to i L
produce data with short statistical autocorrelation times waSourer transformGy(7) of G;; and it is known[4] that
the most difficult and restrictive part of our study. We . e A )

k

present our results and conclusions in Secs. IV and V. G(7)= Zi f do T
T ) - -

Gij(1)=Gj_j(7) =(T Xi(7)x;(0)). 8)

(€)

Il. MODELS
where A, (w) is the spectral density. This function has the
We simulated five Hamiltonians. One was that for a singleproperties that
harmonic oscillator
2 Alw)=—A(— o). (10
H= Zp_m + ;1 X2, L) “ “
The odd symmetry of,(w) allows us to reexpres®) as

which has the natural frequenay,=+/y/m. Another was

i i 1 [~ w[e"™+e BT Alw

that for a chain oN sucf; oscillators, Gk(T):_f do [ - ] Ax(w) 11
p; y , 27 Jo 1-e 0
H=2 S5 (xi—xi-)? )
' and it is straightforward to show thdt (w) obeys the sum
Fourier transforming the displacementsand momentap;, ~ "ule
we can of course rewrite this second Hamiltonian as
Pk Gu(0)= f do 0 0d) (12)
H=3 oo+ imopd, ® [T Lol
X 2m

wherek=—m,— (N—=1)7/N,...,m and w?=2w3(1—cosk). The spectral densit, (w) is also related to the frequency

Fourier transformGR(w) of the real-time, retarded Green's

In this form, the Hamiltonian is explicitly expressed as a )
function[4],

collection of N independent simple oscillators. The natural
frequency of an oscillator is, . The third Hamiltonian was a

variant of the harmonic chain GR(t)=—10(t)([X- (1) X (0)]), (13
2
pPi i
H=2 Zmt 5 (X0 5x (4 VA
. . . . ~R 1 * Ak(w,)
which after Fourier transforming the displacements becomes Gi(w)=5— do' ————— 14
5 27 ) o w—ow' +in
Pk 4 2,2
H= — + s MwpXg, 5 L

Ek 2m 2Kk ® here 0< <1, from which it follows that
yvhere_wﬁzlfr?w%(l—cosk). In this form., the Hamiltonian éE(t): —i6(t) - f“ do A(w)e e 7, (15
is again explicitly expressed as a collectior\bindependent 2w )

simple oscillators but with a dispersion relation that has a
nonzero frequency &=0. The two other Hamiltonians were For an individual harmonic oscillator of frequeney, the

a single, symmetric, double-well potential eigenstates and energies are exactly known, and all the quan-
5 tities in the above paragraph are known analytically:
H=p—+%(x2—1)2 (6) 1

. (16)

2m ST = S SN Bwrd2) Cosy{ﬁ‘”k

1 7
2 B
which has well bottoms ak==+1 and a barrier height of
unity atx=0, and a chain of such potentials, Al w)=1[w—wy) — 8w+ o) ]/ Moy, 17)
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ered, a critical value is reached where because of zero-point
motion and tunneling, the particles collectively make a tran-
sition to a state where the mean-squared displacement of
each is zero. Accordingly, a simulation of the chain, done in
one of these two thermodynamic phases, is expected to ex-
hibit different quantum characteristics in the spectral density.

. METHODS
A. Hybrid path-integral Monte Carlo method

Our Monte Carlo simulations will be based on the Feyn-
man path-integral formulation of quantum mechanics. In
imaginary time, this formulation represents the partition
X X function Z as

FIG. 1. Schematic representation of the energy levels in a har-
monic and double-well potential. ZZJ x e U], (21)

- 1 1 1
R\ — _ where
Gk(w)_mek w—wtiy otodting)’ (18)

B
R 1 S[X(T)]=f d7 H[x(7)] (22
Gku)=9u)ﬁﬁgmmﬁmne*ﬂ, (19 0

1 is the action corresponding to the pathr) and H[x(7)]
2\ _ represents the path dependence of the Hamiltonian. The
() 2Mmowy coth( ey2). 20 Monte Carlo method is used to perform the integration over
the paths in(21). It is applied after the integral if22) is
lator have definite, well-known characteristics. Because thgf |ength A7, and the momenta are approximated by a
potential is symmetric about=0, the eigenfunctions have forward-difference approximation between successive dis-
alternating parity. The ground state has even parity and agjacements in imaginary time:
energys w,. The energies of the excited states are regularly
spaced at intervals aby. The double-well potential is also axi(7) X (7+ A7) —X;(7)
symmetric aboutx=0, and its eigenstates also alternate in pi(7)=m ~m
parity with the ground state again having even parity. The T AT
precise details about the energy spectrum, however, are on}y ) i ) )
available numerically. When these states lie below the bart OF @ one-dimensional system Nf particles, the action be-
rier, and particularly for deep wells, they group into widely €0MeS
separated, nearly degenerate pairs. The separation in energies NL
within and between pairs is called thennel spitting The _A E m
spectral density is dominated by terms with matrix elements S= Ti,jzl 2
involving states 0 and 1. Matrix elements ®finvolving
(0,3, (3.4, (0,9, (3,9, (5,6), etc. have smaller contributions this form is similar in appearance to a classical two-body
to thg spectral dens[ty because of smaller overlap betweeﬁbtential energy defined on ahx L lattice where at a given
the eigenstates. Additionally, most can be “frozen out” by ; he particles interact through the potential energy function
making the temperature at least comparablBde Eq. This ot the original problerscaled byAr), and at a given posi-
temperature range is the one in which we generally workedyon, they interact by a harmonic potential with a spring con-
The nature of the energy levels and eigenstates is schemagiey ¢ equal tan/Ar. For a single particle, the summation
cally represented in Fig. 1. _ o over the spatial coordinateis dropped and the discretized
The spatial Fourier transformation of the Hamiltonian of 5¢tion has the interpretation of a chain where the particles at
the double-well chain does not produce a system of '”deperimaginary time move in a potential 7V/(x;) while interact-
dent oscillators. This is the essence of its nonlinearity. The;ng with particles at neighboring times bi’ a harmonic poten-
model, however, has an interesting zero-temperature phagg with spring constant Vr. For the models we are con-

diagram as a function of the parametessand y [3].  gidering, the discretized actions are as follows.
Roughly, € is a measure of the barrier height relative to the (1) For the single harmonic oscillator

frequency of intersite oscillation and the frequency of oscil-

lation associated with the well bottom. When the barrier L
height is large, the particles collectively are displaced to the S=A72 m
left or the right of their classical equilibrium positions in a =12
broken symmetry state characterized by a nonzero value of

the mean-squared displacement. As the barrier height is low- (2) For the harmonic chain,

(23

2
s +V(Xij . Xit15). (29

AT

2
Xj+17 X
At

Y .2
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NL g X 1% 2y guiding idea behind the hybrid method is to use a method for
S=Art E > % + > (Xit1,=X j)z. (26) the molecular dynamics with emphasis on fast integration, as
ij=1 T ' '

(3) For the harmonic chain plus on-site oscillator,

opposed to accurate integration, and to adjust the size of
these stepsalt andt, so the Monte Carlo decision accepts
90-95 % of the configurations. The molecular dynamics

N x ]y method globally updates all the displacements and is a com-
S:AT.Z > % + > (Xi+1 —xi’j)2+ %xﬁj. putationally efficient procedure. The Monte Carlo procedure
hi=1 T maintains detailed balance to ensure proper equilibrium av-

(27) erages and filters out the results of “bad” integrations.
(4) For the single double-well potential, We found, however, that this simple form of the hybrid
method was inadequate for present purposes. The output of
L mIx . —x]2 our simulation is to be used as input to maximum entropy
SzArE 0 % + %(sz—l)z. (28 procedures to execute the analytic continuation. As we will
]

(5) For the double-well chain,

discuss below, the analytic continuation problem is an ill-
posed problem and hence is very sensitive to the size of the
errors associated with the input data. For a fixed amount of

LN X —x 12 y computer time, reducing the size of the error efficiently by a

S=eA 7_2 5 % + > (X, —xi'jﬂ)2 Monte Carlo method requires shortening the autocorrelation
hi=1 T times between measurements. In our computed Green’s func-

I %(Xiz,,-— 1)2, (29) tion, in spite of small estimates for the error bars, we would

often see smal{within the error barsunphysical sawtooth-

The simplest way to apply the Monte Carlo method is tolike structures in regions about=5/2. Following a simple
move repeatedly from point to point on the space-time latProcedure suggested by N¢8l, we could generally remove
tice, at each point propose a change in the coordinatdhis structure and also be more ergodic. His suggestion was
xi;—X{;, and accept the change via the Metropolis algo-after each Monte Carlo decision to reverse the direction of
rithm with probability miri1,ex—AS)], whereAS is the ~ the molecular time integration, i.eAt——At, with prob-
change in the value of the action proposed by the propose@Pility 1/2. A smaller improvement is achieved by not using
change[5]. This method is often callepath-integral Monte ~ fixed length for the time integration in the molecular dy-
Carlo (PIMC). namics simulation but rather choosing the length randomly

An alternative to the Monte Carlo evaluation of the pathfom the interval {,— §,t,+ &) wheret, and are chosen so
integral is a molecular dynamics evaluatigs]. Here, a fic- (1€ Monte Carlo acceptance rate is in the 90-95 % range.
titious momentum, ; is associated with each point to define We Will refer to the combined method as thgbrid path-

a pseudo-Hamiltonian integral Monte Carlo (HPIMC) method. Adjusting the

Monte Carlo acceptance rate is not the entire story. First, it
seems best to insutg is several times larger than the natural
period associated with the slowest significant modes in the
systems and then choogdo fix the acceptance ratio.

We remark that Fahy and Hamap®@] observed for the

N,L 2

=S T gy
Hp_i;l om0 (30)

sample phase space. The approach takes advantage of ndard hybrid method the existence_ of a critical_tit‘ge
classical nature of the fields in the path-integral formulation dependent on model parameedemarking nonergodic and

and produces the correct statistical mechanics because ﬁ]‘]]aotic behavior in the results of the time integration. For a

classical statistical mechanics the momentum degrees ”rmonic systent, is infinite Whigh suggests the inapplica-
freedom can be integrated out of the partition function. Th llity of the method to a harmonic system. We observed the

method is often callegath-integral molecular dynamics ehavior they found but whethdg was larger or smaller

At the core of the method we used is the hybrid Montethantc had o_nly small consequences on our measured re-
Carlo approach suggested by Duaeteal. [7], which com- sults. As we illustrate below, we achieved very accurate re-
bines the molecular dynamics approach with the MonteSUI;[i/ forlthe harmlg?;]ctrrt\kc])dels. its of the simulati q d
Carlo procedure to obtain the best features of both methods. € also remark that the resufts of the simufations depen

The general expectation is faster equilibration of the simula®" the size ofAr. By performing simulations for several

tion and shorter autocorrelation times between measure((q,jiifferent values OfAT’. we could ?n principle thrapo_late the
guantities. With this method, the following steps are cycled.resuItS to theAT.ZO '”.“'t- We did not d_o th.'s but instead
For a given set ok, ; the corresponding pseudomomenta aresterved that §|m:JIat|ons| performed with different values of
assigned values randomly from a Maxwell-Boltzmann distri-=" gave very similar resuits.
bution for the velocities. The energy is computed. Next, both
the momenta and displacements are evolved by molecular
dynamics for some pseudotintg. The energy is recom- The maximum entropy methol®] is used to regularize
puted. Then the evolved displacements are accepted witlhe solution of(11). Dropping the subscripk for conve-
probability mif1l,exgd—AE)], whereAE is the difference in nience, we rewrite this equations as
energy between the initial and final configurations.
Normally, molecular dynamics is energy conserving so

the evolved displacements would always be accepted. A

and standard molecular dynamics techniques are used tgj

B. Maximum entropy method

G(T):f do K(7,0)[A(w)/w], (31
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where the kernel

1 w[e P+e (F77]

K= 1-em

(32

Because both the kernel addw)/w are regular atv=0, we
solve for A(w)/w and then trivially findA(w). For discrete
values ofr and w we approximaté31) as

Gi= ZKIJJ

(33

The Monte Carlo method will return estimat€s of G;
and estimates of the sample variamxfeon theG; . With this
information, a natural solution path #; would be to find
the values ofA; that minimize

X2=> (G—G)%o? (34)
Gi— 3K A\
-3 [ @
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ity density function. The principle of maximum entropy
states the probabilities should be assigned in such a way as to
maximize

J

Here, them; , called thedefault modelset the location of the
maximum ofS and the value ofS at this point to be zero.
The default model is the solution fdk; in the absence of
other constraints o . The method of maximum entropy
maximizes
Q(A)=aS—3x* (39

To fix @, anad hocprocedure calledhistoric maximum en-
tropy is often usedl10,11]. A more modern alternative is the
Bayesian-basedlassic maximum entropy which uniquely
determinesa provided certain conditions are mgét0,11].
Under these conditions the solution &y is the most prob-
able one. Unfortunately, these conditions seem often violated
in the analytic condition problem. Accordingly, to estimate
the A;, we adopted a procedure suggested by Bryan.

In Bryan's method12], for a given value ofa, we find
the A(@) that maximize<Q(A). For the solution td33), we

This approach, however, almost always fails. One reason ke
that it ignores the strong correlations that normally exist be-

tween the measured values@®f, i.e., values of the Green’s
function at different imaginary times. At the very least, we

must modify(35) to be
x2=i2j (Gi—G)IC ™Y 4(G;—G)), (36)

whereC,
G, . Theith diagonal element oF is simply o2. This modi-

i.j is the measured covariance among the values of

A_Zf da A(a)PrOl{a|G_] (40

where Proba|G_] is the probability ofa given the dateG.
Bayesian analysis shows that

e

Zzda) A

Prot[a|G] Proq a]f

fication of the definition ofy?, while necessary, is insuffi- WhereZ, is the normal|zat|on factor foe ¥, Z4(a) is the

cient. The difficulty is that the inverse problem, that is, solv-normalization factor foe*®

, and Proba] is Jeffreys’ prior.

ing (31) for A(w), is ill posed. This condition is caused by Details on the Computgtlon_of this _joint pro_bability are dis-
the exponential character of the kernel at large values.of cussed elsewhef@]. With this function, the integra(40) is

At large w, large variations inA(w) make little change in

performed numerically.

G(7). The simulation, on the other hand, gives noisy and The most difficult part of the problem is not evaluating
incomplete information abou®(7), and hence for a given set the maximum entropy equations but satisfying the statistical
of G;, an infinite number of\; will satisfy the least-squares assumptions on which they are based. The principal assump-

estimate(36).

The next level of solution seeks to regularize the minimi-

zation of ¥* by constraining it, i.e., minimizing

Xz_z aifi(A),

37

where then; are Lagrange multipliers and thig A) are func-

tion is

7)(2/2

— e
Prof G|A]= Z
L

(42)

The meaning of this assumption is that the measured values
of G; are statistically independent and distributed according
to a multivariable Gaussian distribution function defined by

tions of A; representing possible constraints on the solutionthe covariance matrixC. Proper estimation o is para-
Typical constraints include smoothness, non-negativity, sunmount. Under normal circumstances the data produced by
rules, moments, etc. The difficulty with this approach isthe simulations do not satisfy these assumptions. The proce-

choosing the Lagrange multiplierAd hocchoices are com-

dures we use to have the data approximate these assumptions

monplace. Often small changes in the values of these paramre discussed elsewhdi@. When we have proper data, our

eters produce massive changes in the results.

solution (40) usually shows good insensitivity to the choice

The maximum entropy approach follows from the obser-of the default model. Additionally, the historic and classic
vation that the spectral density is interpretable as a probabimmaximum entropy solutions usually agree well with it.
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for this and the other models: For some parameters and tem-
peratures, th&(7) varies little as a function of; for others,

it varies rapidly at the ends of the interJ@,8) and is flat in

the middle with values nearly equal to zero; and for still
other parameters, it has a featureless, parabolic looking
shape.

The common features of these curves have several signifi-
cant implications for the analytic continuation problem. First,
we remark that from the quantum Monte Carlo simulations
we obtain estimates @(7) only at a relatively small number
of discrete values; . The smoothness of the curves implies

< B that theG(7;) at neighboring values of are correlated. The
computation of the covariance matrix {86) is thus an im-

FIG. 2. Green’s functioi(7) for a particle in a harmonic well, ~portant part of the analysis of the data. While the correlations

obtained from the analytical forf21) potential, as a function of among the different values ofG(7) make the interpretation

G(1)/G(0)

imaginary timer and at different values gBwg. of the assignment of an “error bar” to a givervalue deli-
cate, such an assignment illustrates several difficulties inher-
V. RESULTS ent in the data that help to make the analytic continuation of

the data often very difficult. In the case whé&sér) is nearly

To determine spectral properties of the models listed irflat, the errors bars mean that a number of valueS@J are
Sec. I, we performed HPIMC simulations with up to 800 “within the error bars” of each other. This situation, along
bins of data(N;,), each with up to 4000 measurementswith the correlations implied by sizable off-diagonal ele-
(Nsweeg- Simulations with large bin sizes were necessary tanents of the covariance matrix, means that only a subset,
avoid nonergodic behavior of the HPIMC method when usedand often a small subset, of the measured value& @)
for chains with double-well potentials close to the zero-represent independent data useful for the analytic continua-
temperature phase transition point. Furthermore, we set th#@n procedure. The analytic continuation near the classical
value for the imaginary time step W7=0.25. This choice, limit can be very difficult.
on the one hand, was small enough to avoid errors associated The situation with the rapid end-point variation and the
with the discretization of the otherwise continuous imaginaryflat nearly zero values is another difficult case. Again the flat
time scaler, and, on the other hand, was large enough taegion generates a loss of useful valuesGifr) and the
avoid unphysical correlations between successive imaginarnsmallness ofG(7) in this region can engender situations
time measurements of the Green'’s functi®fr). Since our where the error bars would imply that during the simulation
calculations were performed at the inverse temperatgres estimates of5(7), which must be non-negative, were derived
between 1 and 10, the corresponding number of imaginarfrom ensemble values that included negative ones. The
time stepsl =BAT was between 40 and 60. Monte Carlo algorithms in fact do not produce negative val-

For a successful application of the HPIMC method it isues but do produce highly skewed fluctuations about the
crucial to choose the proper value of the pseudotijjand ~ mean. The Gaussian assumption for the likelihood function
the size of its step\t in the molecular dynamic part of the in (42) thus can only be approached in the limits of a large
simulation. Following Fahy and Hamman, we determined thenumber of independent measurements when the central limit
value of the critical valud, for each case under consider- controls the data distribution. The ratio of the mean value to
ation and then took,>t to avoid running the simulation in  the estimated variancgignal to noise ratijpalso indicates
a nonergodic regime. Typical values fgy were between 5 that the most effective data come from those in the rapidly
and 15 for the double-well cases listed below. We stress thatecreasing region. At low temperatures, the analytic continu-
there was not much difference in the quality of the HPIMC ation problem can become very difficult.
data if we chosd,>t; or choset,=t./2. In addition, we The details of the simulation algorithm can also impact
obtained good data for the harmonic wells by choosinghe quality of the results and data. In Fig. 3, we sh@{«r)/
t,~1/w, even though for this particular cagg=~. If we  G(0) as a function ofr obtained by two closely related
define wy as the smallest nonzero frequency of the systemsimulation techniques for a single harmonic oscillator. We
optimal values of the step sizkt are between 0.0&(, and  remark that the scale of the abscissa is 1/100 of that of Fig. 2
0.1l/lw,y. Larger values ofAt lead to larger errors in the and the ordinate shows only in a narrow region at the
pseudotime propagation, which then lead to small acceptangymmetry point3/2. The dashed curve is the analytic result
ratios. Smaller values ofAt lead to longer computation obtained from(16). The data represented by square markers
times. Unless specified otherwise, we always chosevere obtained by the HPIMC method without the time-
m=m,_,=y=1. We emphasize that the HPIMC method is reversed step; the data represented by the circles were ob-
insensitive to the choice of the mass, associated with the tained with the HPIMC method with the time-reversed step.
fictitious momentumr, ; . In each case, the same number of Monte Carlo steps was

In Fig. 2, we show the displacement-displacementmade. One sees that the fluctuations with the HPIMC method
Green’s functionG(7), for a single harmonic oscillator, ob- without the time-reversed step are larger and that the error
tained by evaluating16) for various values ofwy3, as a bars associated with the results suggest a dip into non-
function of the imaginary-time variable These curves look negative values 06 (7). More significantly, the results devi-
similar to the Green’s functions that we obtained numericallyate from the exact curve by more than one standard deviation
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FIG. 3. Comparison of analytical results for the Green’s func- o i
tions for a particle in a harmonic weltlashed curvewith numeri-
cal results (open circles and squapesbtained using HPIMC FIG. 5. The analytic continuation @&(7) to GR(t), compared
method (@) with and (b) without the time-reversal step in the mo- ith exact result¢solid line). (a) The data (b) the spectral density,
lecular dynamic part of the algorithm. (c) the real part of the Green’s function, arid) the real-time,

: . . _ retarded Green’s functioi(7=0)=(x%)=0.500.
in the immediate vicinity ofr=g/2.

The analytic continuation result fok(w) from the data the exact results foG(7) (solid line) obtained from(16). In
partially shown in Fig. 3 is shown in Fig. 4. Frott7), the  Fig. 5b), the dashed curve is th%&(w) obtained by the ana-
spectral density should be @@—1). The solid curve is lytic continuation procedure, while the solid line is a Lorent-
obtained from the HPIMC algorithm and shows a broadeneaian at the same location. The real part@(fw) is shown in
S function at the right location with nearly the correct Fig. 5c), where the dashed line is the quantum Monte Carlo
weight. The fraction of a percent difference from the correctresult and the solid line is an analytic result obtained from
weight is most likely a consequence of the small error causethe Lorentzian from Fig. ®). The width 5 of the Lorentzian
by discretizing the imaginary-time derivatives. On the othershown in Fig. %b) was adjusted so the=0 values of the
hand, the dashed curve, which is obtained from the data oliwo curves agreed. The single adjustment produced remark-
tained from the HIPMC algorithm without the time-reversedably good agreement at high frequencies. The principal dif-
step, is broader, located incorrectly, and has a larger discrefierences between the two curves arevat=1 where diver-
ancy in its weight. The increased breadth is a consequence génces should exist as indicated @8). Finally, GX(t) is
the larger variance in the measured data. The incorrect locshown in Fig. %d). The solid line was obtained analytically
tion and poorer weight are a consequence of the small deviand used the Lorentzian of Fig(t), while the dashed line is
tion from the exact value near=g/2, which in turn is a the quantum Monte Carlo result. The agreement between the
consequence of the Monte Carlo algorithm performingresults is satisfying and comparable in quality to that pos-
badly. sible by real-time quantum Monte Carlo methods. The width

In Fig. 5, with the data obtained from the HPIMC algo- of the Lorentzian was @, i.e., about seven times the natu-
rithm, we show the full analytic continuation fro@(7) to  ral period of the harmonic oscillator. This width is still con-
GR(t). In Fig. 5a), the dataopen circlesare compared with trolled by the size of the variance in the measured values of
G(7).

For the case of the harmonic chain, we computed the
Green’s functionG,(7) for each independent wave number
and from it found the corresponding spectral densifyw).

a) G(0)<0.496 As with the single oscillator, this function should beda
----- b) G(0)=0482 | function located atw, and should have a weight equal to
G (0)=(x2). As in the single-oscillator case, instead of
finding a é function, we found a Lorentzian-like peak at the
correct location with the correct weight. The peaks for dif-
ferent values ok, however, had different widths. In general,
the peak widths increased with increaslqggsorrelating with
the increased variance associated with &g7). The spec-
tral densities for the three lowest valueslofire shown in
= v 20 Fig. 6. The peak positions as a function®fjive the phonon
' : dispersion relation. Our determination of this relation is com-
pared to the exact result in Fig. 7. The agreement is excel-

FIG. 4. Comparison of the spectral functions obtained from theent. There is a difficulty that must be mentioned. k&0
data shown in Fig. 3. As in Fig. 3, in we present spectral functionsand w,=0, G(7) is flat and the weight of the peak ap-
extracted from HPIMC datda) with and (b) without the time-  proaches infinity. Fok=0, not surprisingly, we were unable
reversal step. We also presdaf0), the computed area under the to do the analytic continuation. This situation is why we
curves. Analytically,G(7=0)=(x?)=0.500. considered the model defined B4). Here,w, atk=0 is not

6.0
Harmonic well

m=y=1

40| B=10
N, ye0,=2000

sweep

N,, =800

Alw)

20}

0.0

0.0 0.5
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3.0 . r " 100.0 v y . r
N=10 —— m=4.0, ©,=0.20, G(0)=0.566, <x§>=04588, B=20
2 — m=2.0, ,=0.39, G(0)=0.602, <x >=0.606, p=15
_ — k=1,G(0)=0.0806, «C>=0.0812 | | T o oy 0,065, oan0.670. e
p=10 1 ~~~~~~ k=2, G,{0)=0.0420, <xz,?=o.o425 80.0 | =10, ©,=0.72, G(0)=0.669, <x’>=0.670, p=10
m=y=1 ---- k=3, G,(0)=0.0302, <x",>=0.0309
2.0 N,;,=800 ] 00 | Double well
N,,.,.=2000 - y=1
sweep 38
5 a) 7 N, 00s=4000
< j 400 N,, =400-1000
I |
1.0 rﬁ J 1 200 | l
[ i ,Il \\‘\
,-f‘; i 00 . . S
B I 0.0 0.2 0.4 0.6 0.8 1.0
I H
0.0 : L S @
0.0 0.5 1.0 1.5 2.0
® FIG. 8. Spectral functions for a single double-well potential at
i5 different values ofm and different temperatures@/Arrows above
| N=to o k0, G,(0)=0.0487, <x’.>=0.0496 spectral functions denote exact positiansof peaks as obtained by
= =L MU=V ’ K== . . .
B=10 b o k=1, GL{0)=0.0423 ,<x:k>=0.0423 numerical solution of the double-well potential. We also compare
mey=l | ';=§ gkggrggg;g’ :igkjg-gg;‘; sum rules, calculated by integrating the spectral functidtie)
——— k=3, G,(0)=0.0256, <x’,>=0. ; e 2 : :
N,,=800 ——- k=4, G:(0)=0.0225, <X2:>=0,0225 overo, Wlth G(r—_O)—(x ), obtained dlrectly from th(? QMC calcu-
1.0 1 N,,,,,=2000 ! T lation. » is the ratio 1ht, wheren was obtained by fittingh(w) to

the analytical formG(w); see Eq.(23).

. For a single, double-well potential, the spectral density
; ) ] can give direct information about tunneling processes. This
'| situation is illustrated in Fig. 8 where the spectral densities
". A for the Hamiltonian, described k), are shown for several
AW different values of the parameter. It is straightforward to
2.0 3.0 discretize Schidinger’s time-independent differential equa-
o) tion for this potential and find the eigenvalues of the result-
. ) ) _ ing eigenvalue equation. We adjusted the model parameters

FIG. 6. Spectral functions for the h_armonlc chain at dlffer_entSO only a very few(usually ong of the lowest eigenstates lay
values ofk. Arrows above spectral funct_lons denote exact positions 15w the barrier height, similar to the situation depicted in
of peaks. We also compare the numerlcally calculated sum fules Fig. 1. (For d I imulati thod Id get
with analytical values(a) Model defined by Eq(3); (b) model ' 'd- +-(FOr deeper wells, our simulation methods would ge
defined by Eq(4). stuck in one well or the other for_ large numbers of Monte
Carlo steps, and hence the algorithm effectively lost ergod-
icity.) In the cases reported, the temperatures of the simula-
tions were also less than the separation between the two low-
est lying pairs of eigenstates. Thus our spectral densities only
exhibited the transition between these two states, and the
position of the peak gives a direct measure of the lowest
frequency tunnel splitting. This position agreed very well
3.0 ' ' ' ' with the exact value calculated from ScHioger’'s equation.
Additionally, the weight of the peak also agreed well with
the sum rule(12).

For a chain of double-well potentia(g), still a different
situation presents itself. At zero temperature, depending on
the values ofe and v, the system exists either in a broken
symmetry phase, in which the mean-squared displacement is
nonzero, or in a symmetric phase, in which the mean-squared
displacement is zero. The model has a quantum phase tran-
sition. We found that simulation, if performed in the broken
symmetry phase, stuck in one well or the other for large
numbers of Monte Carlo steps, making it difficult to collect

0.05%5 02 04 0.6 0.8 10 the amount of statistically independent information to do the
K[ analytic continuation. In Fig. 9, we report tig(w) for two
simulations done in the symmetric phase. The one in Fig.

FIG. 7. Dispersion relation, for harmonic chain witm=1  9(b) is close to the zero-temperature phase boundary. As one
andy=1. Markers correspond to discrete values.gffor a ten-site  moves closer to th& =0 phase boundary by increasiaghe
system. Squares, the model defined by @, circles, Eq.(4). k=0 peak moves towarde=0. This movement is a conse-

05 |

0.0

0.0

zero and the determination 8§ (w), and subsequently, , is
possible for all values ok. The dispersion relation found
from the analytic continuation agrees very well with the ex-
act result.
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2.0 . r clude that we can predict the real-time dynamics for length
— k=0, G,(0)=0.067, <x,’>=0.068 of times corresponding to five to ten times the natural period
e gkﬁg;:gggl ool of the model. The length of time was limited by the simula-
15} ——— k=3, Gi(0)=0.025, <x::>=o.025 ] tion algorithm and not directly by the analytic continuation
—-—- k=4, G(0)=0.020, <x,>=0.020 procedure_
The simulation algorithm influences the results in at least
30l N=20 two ways. One way i_s the ease with which s_tatistically inde-
< - 615 pendent, Gaussmn-dstnbuted data are obtained. In our expe-
a) €205, m=t, =2 rience, of the various quantum Monte Carlo methods we
’ have used, path-integral Monte CafIMC) methods tend
05| . N5=600, Ny, =1000 1 to produce data with long-ranged correlations, thus making
‘,"\ . statistical independence sometimes difficult to achieve.
[

i Achieving statistical independence is important for proper
0.00 — R error estimation because of the sensitivity of ill-posed prob-

: ‘ : : lems to errors in the data. Without statistical independence
these errors are usually underestimated. That the data are

5.0 v T ; > < ¢ ! .
20, G,(0)=0107, <x’>=0.135 Gaussian distributed is necessary to satisfy the assumptions
e k=1, Gy(0)=0.0448, <, >=0.0455 of the analytic continuation procedure. Currently, large
4.0 Y gkgg;jggfg =002 amounts of data are used to force the simulation data to have
T e proper statistical properties. The method of binned averages
30 | [2], with many measurements in a bin, is used to achieve
5 N=20 statistical independence. The central limit theorem is used to
b4 [3=_15 obtain a Gaussian distribution of the binned averages. Be-
20t b) £=0.75, m=y=1 1 cause of the onv computatior!al intensity necessary for the
Ny;=600, N,,,,=2000 test cases considered, producing the necessary large amounts
10k of data was not problematic.
A second way the algorithm can influence the results is
PN through broken ergodicity and unphysical results. Here, we
0.0 B * are referring to the ragged structure we sav@ifr) with the
0.0 05 1.0 15 2.0

hybrid method and to the small systematic difference be-
tween the exact and computed results. We have not previ-
FIG. 9. Spectral functioné\(w) for a chain of 20 sites at two ously seen similar problems. Small modifications in the
different values ofe: (@) €=0.5 and(b) €=0.75. We present the simulation algorithm removed the problems but it was at first
spectral functions for different wave vectdesn units of 2m/20. difficult to determine the source of the difficulty. Because the
purpose of the research was not algorithmic development, we

quence of the decreasing probability for tunneling betweerlid not do any comparisons of HPIMC and other possible

the two minima of the double-well potential as the barriermethods to determine relative efficiency and other merits.
height is increased. Again, the computation times for these simulations are small
(a few hours on a modest workstatjoend so we were un-
motivated to make such comparisons. Other recently sug-
V. CONCLUDING REMARKS gested approaches, e 3,14, should be considered as part
We used methods of Bayesian statistical inference and th(@:f further studies. . .
In general, we believe we have demonstrated that analyti-

principle of maximum entropy to analytically continue I Gnuing i . ” lation funcii b
imaginary-time Green’s function generated in quantumfa. ydccf)n inuing ma:gmaa- npeccorlrea_mnl tl.mc I(t)nsyb(t) -
Monte Carlo simulations to obtain the real-time 'N€d fom a guantum Monte t-ario simuiation, to obtain

displacement-displacement Green’s functions. For test prol{_eal-time correlation functions is a feasible alternative to ob-
) aining such real-time functions directly from a quantum

lems, we considered chains of harmonic and anharmonic o%vl te Carlo simulation d . i 0 dvant .
cillators whose properties we simulated by a hybrid path- onte L.arlo simulation done in real ime. One advantage in

integral quantum Monte CarltHPIMC) method. From the qhoosing this. approach appears to b? th? 'Oﬁger length of
imaginary-time, displacement-displacement Green'’s funclime over which the real-tlmg mformatlpn is faithful to the
correct result. Of course, this conclusion is based on one

tion, we first obtained its spectral density. For harmonic os—t dv of simol dels- h this studv d " |
cillators, we demonstrated that the peaks of this functiorp-udy O SImple modeis, however, this study does strongly

were in the correct position and their area satisfied a surﬂ‘d'cate the direction for further and more extensive work.
rule_. _Add|t|0nally, as a function 01_‘ wave number_, the peak ACKNOWLEDGMENTS

positions followed the correct dispersion relation. For a

double-well oscillator, we demonstrated that the peak loca- This work was supported by the U.S. Department of En-
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